Three-Dimensional Graphene Foam Supported Fe₃O₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability

Jingshan Luo, Jilei Liu, Zhiyuan Zeng, Chi Fan Ng, Lingjie Ma, Hua Zhang, Jianyi Lin, Zexiang Shen, and Hong Jin Fan

†Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
‡School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
§Centre for Disruptive Photonic Technologies, Nanyang Technological University, 637371, Singapore
‖Heterogeneous Catalysis, Institute of Chemical Engineering and Sciences, A*star, 1 Pesek Road, Jurong Island, 627833, Singapore

Supporting Information

ABSTRACT: Fe₃O₄ has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe₃O₄ onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe₃O₄ in lithium ion battery to date.

KEYWORDS: 3D graphene foam, iron oxide, lithium ion battery, atomic layer deposition, high rate capability, Li ion storage

The emergence of electric vehicles and power grid applications demands lithium ion batteries (LIB) with both high energy capacity and power density. This requires a scrupulous selection of materials and design of nanostructures that allow fast charge−discharge rate capability. Fe₃O₄ with a high theoretical energy capacity (around three times of graphite), earth abundance, and low cost has long been considered as a promising anode material. However, the large volume expansion and the low conductivity characteristics of Fe₃O₄ hinder its stable performance. A breaking down of electrical connection of Fe₃O₄ from current collectors due to high volume changes during continuous charge−discharge process has been reported, which significantly limits its practical application. During the past decades, tremendous efforts have been made to overcome these issues, which can be generally summarized into two categories: one is building nanostructures, the other is combining Fe₃O₄ with conductive substrates or other stable metal oxides.

Building nanostructures is a primary and popular strategy to improve the performance of the LIB electrode, as nanostructures have several advantages over their bulk counterparts. First, a nanostructure has a short transport path which could shorten the Li ions diffusion time. Second, the nanostructure has an increased electrode/electrolyte contact area that is beneficial to the high current rate performance. More importantly, with nanostructures, the strain could be significantly reduced during lithiation and delithiation process, thus preserving the structural integrity of the electrode and leading to a more stable cycle performance. Motivated by these advantages, various nanostructures have been designed to enhance the performance of iron oxide LIB electrodes, such as nanoparticles, nanowires, nanotubes, nanowalls, porous nanosheets, and hollow nanoparticles. To further increase the conductivity and reduce the diffusion length, Fe₃O₄ has been combined with various metal nanostructures, polymers, carbon materials, and other stable materials. The development of carbon materials from amorphous carbon, carbon nanotubes to more recently graphene leads to the hybridization of Fe₃O₄ with carbon materials into a new path toward success. In particular, graphene, which has an excellent electrical conductivity, high mechanical flexibility, large specific surface area, and pronounced thermal and chemical stability, provides great opportunity in improving the performance of Fe₃O₄ as the LIB electrodes.

Despite the progress mentioned above, the performance enhancement of Fe₃O₄ LIB electrode is still marginal. To our

Received: September 16, 2013
Revised: November 6, 2013
Published: November 12, 2013
knowledge, so far there is no report on Fe₃O₄-based electrodes that can demonstrate long cycle life up to hundreds of cycles with a fast charge discharge capability. In this article, we demonstrate a new while relatively simple bottom up strategy to build bicontinuous mesoporous Fe₃O₄ nanostructures grafted onto the graphene foam. Such a unique LIB electrode structure has following characteristics: First, the three-dimensional (3D) graphene foam grown by chemical vapor deposition (CVD) has a high electrical conductivity (around 1000 S/m) that ensures an efficient ion and electron transportation. In addition, the 3D graphene foam is extremely light and flexible compared to other 3D bulk metal electrodes such as Ni foams. This is highly desirable for developing the power source for portable and flexible electronics. Second, the bicontinuous Fe₃O₄ nanostructure is formed by interconnected nanocrystallites that are homogeneously distributed on the graphene foam surface with a close physical contact. The direct contact and interconnection provide an efficient lithium ion and electron transport between Fe₃O₄ and graphene, as well as ion transport between the electrolyte and the active material. With this design, the graphene foam can be directly employed as the current collector without binder and conducting agent, so that the intact contact between Fe₃O₄ particles but also the breaking-down of electric connection between the active material and the current collector due to the volume change during long cycles of charge and discharge. Finally, as the Fe₃O₄ is obtained from a uniform-thickness ZnO sacrificial layer, the loading of Fe₃O₄ can thus be tuned by varying the ZnO layer thickness. This allows a high amount of active material within the electrode. In a nutshell, the as-fabricated 3D architectures may satisfy nearly all kinetic requirements for long cycle life and fast charging and discharging of an ideal electrode material. We demonstrate the charge and discharge of the hybrid electrode up to 500 cycles with the capacity of ~780 mAh/g at 1C and ~350 mAh/g at 10C.

Figure 1. Schematic diagram of the sample structure. (a) Graphene foam backbone. (b) Graphene foam coated with ZnO by atomic layer deposition (GF@ZnO). (c) Graphene foam supported Fe₃O₄ nanostructure electrodes (GF@Fe₃O₄).

Figure 2. Sample characterization. (a) X-ray diffraction patterns of the graphene form (GF), graphene foam-supported ZnO (GF@ZnO) and graphene foam-supported Fe₃O₄ (GF@Fe₃O₄) nanostructures. (b) Raman spectra of the GF, GF@ZnO, and GF@Fe₃O₄ nanostructures. X-ray photoelectron spectroscopy of (c) the Fe 2p states and (d) of the O 1s state in Fe₃O₄.
Fabrication of GF@Fe3O4 Composite. Graphene foam rather than the other carbon materials was chosen because of its excellent conductivity, 3D porous structure, and flexible and freestanding property. The bicontinuous mesoporous Fe3O4 nanostructure was deposited on the graphene surface by the ZnO sacrificial layer assisted hydrolysis.28 The fabrication process of the graphene foam supported Fe3O4 nanostructure electrodes (GF@Fe3O4) is composed of three steps (see schematics in Figure 1). For the first step, graphene foam was grown on Ni foam by CVD and then Ni was etched away by a mixture of FeCl3 and HCl solution following the previous reports (Figure 1a).27 In the second step, a layer of ZnO was coated onto the graphene foam by atomic layer deposition (ALD) (Figure 1b). ALD is a thin film deposition technique that is based on self-limiting surface reactions by sequential exposure of the substrate to different gas phase precursors, which could provide precise thickness control and homogeneous coating of active materials on various substrates.29,30 Previously, we have applied ALD for the fabrication of 3D inverse opal photoelectrochemical electrodes.29,31 As the basal plane of graphene is chemically inert, to ensure conformal and homogeneous coating of ZnO, the graphene foams were treated by oxygen plasma before ALD to create the hydroxyl bonds on the surface.32,33 In the last step, the ZnO-coated graphene foams were bathed into the FeCl3 solution mixed with glucose. After annealing at 400 °C in an Ar atmosphere, the bicontinuous mesoporous Fe3O4 nanostructure on graphene foam was obtained (Figure 1c). The glucose here was used to form a layer of amorphous carbon on the Fe3O4 surface after high-temperature pyrolysis.13 This indirect ALD ZnO sacrificial layer-assisted deposition of Fe3O4 on graphene foam could circumvent the challenges of direct ALD Fe3O4 on graphene, which has a very low growth rate and thus low iron oxides loading, and needs high temperature and ozone atmosphere.34,35 More pronouncedly, this method can form the unique bicontinuous mesoporous nanostructure rather than a compact thin film.

Structural Characterization. To reveal the structure and composition of the electrodes in each step, X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analysis were carried out. Results are shown in Figure 2. The as-grown graphene foam shows two typical diffraction peaks at 26.5 and 54.6°, attributed to the (002) and (004) reflections of graphitic carbon, respectively (JCPDS card 75-1621).36 The high crystalline structure of graphene is favorable for the ion diffusion and electron transfer. More diffraction peaks show up after ZnO coating by ALD, corresponding to the hexagonal structure of ZnO (JCPDS card 36-1451). The ALD ZnO is crystalline due to the high deposition temperature. After the replacement of ZnO into Fe3O4, the diffraction peaks of ZnO disappear, while only the peaks of Fe3O4 corresponding to the magnetite structure can be seen (JCPDS, card 19-0629). Raman spectra in Figure 2b show three typical peaks of graphene, centered at 1580, 2550, and 2720 cm−1 and corresponding to the G, G*, and 2D band, respectively.37–39 The lack of the trace of the disorder-induced D band at 1350 cm−1 indicates the high quality of the graphene foam. Also the Raman intensity of the G band is much higher than the 2D band, which is consistent with the multilayer property of graphene foam.27,36,40 This makes it rigid to serve as the scaffold for battery electrodes. After the ZnO deposition, two additional major peaks appear at 496 and 569 cm−1. The later corresponds to ZnO A1g (LO) phonon41 and the former might be due to the interaction between ZnO and graphene foam. It is noted that after the ZnO deposition the graphene D band increases due to the introduction of more defects, while the higher-order 2D band is greatly broadened although the intensity is reduced, which might also originate from the outmost amorphous carbon layer.42 The D band of graphene foam becomes more intensive due to the introduction of more defects, while the higher-order 2D band is greatly broadened although the intensity is reduced, which might also originate from the outmost amorphous carbon layer.43 XPS results (Figure 2c,d) show typical characteristics of Fe3O4 of the final electrode with two peaks located at 710.9 and 724.2 eV, corresponding to the Fe 2p3/2 and 2p1/2 states, respectively.44 The absence of the satellite peaks also corroborates the assignment of the final product to Fe3O4 rather than Fe2O3.45 This is an important character to distinguish between Fe2O3 (magnetite) and γ-Fe2O3.
Fe₂O₃ (maghemite) since the two have the same crystalline structure but differ only in the valence state of iron ions. For the O 1s spectrum, the low binding energy peak centered at 530.9 eV corresponds to the O²⁻ bonded with iron, and the high energy peak at 532.2 eV can be assigned to C−O and O−C═O bonds. A small shoulder between the two dominating peaks, around 531.2 eV, could originate from surface −OH groups. The wide scan XPS is presented in Supporting Information, Figure S1.

The detailed morphology of the GF@Fe₃O₄ bicontinuous structure is characterized using electron micrographs. As revealed by the scanning electron microscopy (SEM) images, the CVD grown graphene foam well inherits the structure of the pristine Ni foam with 3D and porous characteristics (Figure 3a,d). Furthermore, the graphene foams are very light and flexible. The thickness or the mass of the graphene foam (from 0.1 to 0.8 mg/cm²) can be tuned by adjusting the growth time. After ZnO coating, the morphology of graphene foam shows no obvious change, indicating that the coating is conformal and homogeneous (Figure 3b). The tiny particle type compact ZnO layer on graphene foam can be revealed by the high-magnification SEM and transmission electron microscopy (TEM) images, as illustrated in Figures 3e and 4b. The excellent coating of the ZnO will result in a good coverage of Fe₃O₄ on graphene foam. More importantly, the loading of the Fe₃O₄ can be tuned by varying the ZnO deposition cycles. Supporting Information, Figure S2 shows the SEM and TEM images of the graphene foam-supported FeOOH by using ZnO layer of 10, 30, and 50 nm thickness with bath in FeCl₃ solution for 24 h without glucose; ZnO is transformed into FeOOH due to hydrolysis of FeCl₃. After this and the final transformation into Fe₃O₄, the graphene foam surface becomes rough, which can be seen under even low-magnification SEM image in Figure 3c, covered by small particles, as revealed by high-magnification SEM (Figure 3f) and TEM (Figure 4c,d and Supporting Information, Figure S3) images. Each individual particle is around 30 nm in diameter and is single crystalline, as shown by the HRTEM image in Figure 4e and selected area electron diffraction pattern in Figure 4f. The distance of the lattice fringes is around 0.25 nm, corresponding to the (311) plane of Fe₃O₄. By a closer inspection of the Fe₃O₄ nanocrystallites, it is found that the crystallites are interconnected with each other, forming bicontinuous mesoporous nanostructure. The electron diffraction pattern from selected areas shows the characteristics of both graphene and Fe₃O₄.

Figure 4. TEM investigation. (a) GF. (b) GF@ZnO. (c,d) GF@Fe₃O₄. (e) HRTEM of an individual Fe₃O₄ nanoparticle. (f) SAED patterns of GF@Fe₃O₄.

Figure 5. Electrochemical properties of the GF@Fe₃O₄ LIB electrodes. (a) CV curves of the GF@Fe₃O₄ electrode. (b) Discharge−charge voltage−capacity profiles of the GF@Fe₃O₄ electrode at 1C rate. (c) Cycling profiles of the GF and GF@Fe₃O₄ electrodes at 1C rate.

Fe₂O₃ (maghemite) since the two have the same crystalline structure but differ only in the valence state of iron ions. For the O 1s spectrum, the low binding energy peak centered at 530.9 eV corresponds to the O²⁻ bonded with iron, and the high energy peak at 532.2 eV can be assigned to C−O and O−C═O bonds. A small shoulder between the two dominating peaks, around 531.2 eV, could originate from surface −OH groups. The wide scan XPS is presented in Supporting Information, Figure S1.

The detailed morphology of the GF@Fe₃O₄ bicontinuous structure is characterized using electron micrographs. As revealed by the scanning electron microscopy (SEM) images, the CVD grown graphene foam well inherits the structure of the pristine Ni foam with 3D and porous characteristics (Figure 3a,d). Furthermore, the graphene foams are very light and flexible. The thickness or the mass of the graphene foam (from 0.1 to 0.8 mg/cm²) can be tuned by adjusting the growth time. After ZnO coating, the morphology of graphene foam shows no obvious change, indicating that the coating is conformal and homogeneous (Figure 3b). The tiny particle type compact ZnO layer on graphene foam can be revealed by the high-magnification SEM and transmission electron microscopy (TEM) images, as illustrated in Figures 3e and 4b. The excellent coating of the ZnO will result in a good coverage of Fe₃O₄ on graphene foam. More importantly, the loading of the Fe₃O₄ can be tuned by varying the ZnO deposition cycles. Supporting Information, Figure S2 shows the SEM and TEM images of the graphene foam-supported FeOOH by using ZnO layer of 10, 30, and 50 nm thickness with bath in FeCl₃ solution for 24 h without glucose; ZnO is transformed into FeOOH due to hydrolysis of FeCl₃. After this and the final transformation into Fe₃O₄, the graphene foam surface becomes rough, which can be seen under even low-magnification SEM image in Figure 3c, covered by small particles, as revealed by high-magnification SEM (Figure 3f) and TEM (Figure 4c,d and Supporting Information, Figure S3) images. Each individual particle is around 30 nm in diameter and is single crystalline, as shown by the HRTEM image in Figure 4e and selected area electron diffraction pattern in Figure 4f. The distance of the lattice fringes is around 0.25 nm, corresponding to the (311) plane of Fe₃O₄. By a closer inspection of the Fe₃O₄ nanocrystallites, it is found that the crystallites are interconnected with each other, forming bicontinuous mesoporous nanostructure. The electron diffraction pattern from selected areas shows the characteristics of both graphene and Fe₃O₄.
Lithium Storage Performance. The electrochemical property of the GF@Fe$_3$O$_4$ electrodes was systematically investigated by assembling them into coin cells with the lithium foil as the reference electrode. The charge storage behavior was first characterized by cyclic voltammetry (CV). As shown in Figure 5a, in the first discharge process two well-defined reduction peaks can be resolved at 0.67 and 0.27 V, respectively, corresponding to the structure transition induced by lithium intercalation (Fe$_3$O$_4$ + xLi$^+$ + xe$^-$ → Li$_x$Fe$_3$O$_4$) and the further reduction of Li$_x$Fe$_3$O$_4$ to Fe(0) by conversion reaction [Li$_x$Fe$_3$O$_4$ + (8 − x)Li$^+$ + (8 − x)e$^-$ → 4Li$_2$O + 3Fe], which have been well elaborated in previous studies. In the subsequent cycles, redox reactions of lithium insertion/extraction are highly reversible, where the cathodic lithium insertion mainly occurs at 1.1 and 0.75 V, and the anodic lithium extraction occurs at 1.6 and 2.3 V due to the electrochemical reduction/oxidation (Fe$_3$O$_4$↔Fe) reactions accompanying with lithium ion insertion (lithiation) and extraction (delithiation). Apart from the reaction peaks for Fe$_3$O$_4$, the CV profiles also show another pair of redox peaks located at 0.1 and 0.27 V, which correspond to the further reduction of Li$_2$O into Fe by the irreversible reactions. Despite evidently after cycling. This has been commonly observed for metal oxide electrodes in long time cycles, but there is no record for Fe$_3$O$_4$ based electrodes for LIB. In order to evaluate the cycle stability of the electrodes, the discharge−charge−measurements were carried out at 1C rate up to 500 cycles in ambient condition. Figure 5c shows the extremely high cyclic stability of the hybrid electrode. For comparison, controlled cells with pure graphene foam electrode were also tested. The capacity of the composite electrode shows a trivial decrease during the first 100 cycles followed by slow increase in the subsequent steps. A capacity of 870 mAh/g is retained till 500 cycles at 1C discharge and charge rate. This is remarkable compared to the previous reports in cycling stability. Overall the electrode shows relatively stable performance, and the capacity is around triple that of the pure graphene foam electrode, as a result of dominating contribution by Fe$_3$O$_4$ (Figure 5c). As for the pure Fe$_3$O$_4$ electrode, the cycle life in literature is less than 100 cycles even at 0.5C capacity rate.

To test the ultrafast charging and discharging capability of the electrodes, the galvanostatic discharge (lithium insertion)−charge (lithium extraction) measurements were carried out at various C rates. Figure 6a,b shows the decrease in the capacity with increasing C rates. A high capacity of 800 mAh/g can be measured when the C rate reduces back from 60C to 1C, indicating a high stability as well as excellent reversibility. Noticeably, the electrode delivers a capacity of 190 mAh/g at 60 C, implying the potential of full charge in about 1 min. This has not been reported ever for Fe$_3$O$_4$ based electrodes for LIB. The cyclic capacity profiles at both 6C and 10C rates till 500 cycles are reasonably good, remaining at ~400 and 300 mAh/g, respectively (Figure 6c), which is much better than conventional graphite anodes at such high C rates.

To understand the possible synergistic effect in the composite electrode, the sample was characterized after 500 cycles discharge and charge at 1C. The electrochemical impedance spectroscopy result (Supporting Information, Figure S5a) shows that the impedance of the electrode decreases evidently after cycling. This has been commonly observed for metal oxide LIB electrodes, and herein could be due to the reduction of Fe$_3$O$_4$ into Fe by the irreversible reactions. Despite somewhat pulverization of the electrodes due to repeated lithiation−delithiation, the bicontinuous mesoporous Fe$_3$O$_4$ layer still adheres firmly to the surface of graphene foam, and the individual Fe$_3$O$_4$ nanocrystallites can still be well recognized (Supporting Information, Figure S5b).

It is noted that the capacity increases gradually during cycling. This phenomenon has also been observed previously for metal oxide electrodes in long time cycles, but there...
is so far no consensus on the reason. We propose three possibilities as follows. (i) The pulverization will increase the surface area of the electrode and release more active sites for lithium storage. So the capacity increases, given that the pulverized particles are still attached to the graphene foam. (ii) The decrement of capacity in the initial stage is accompanied with irreversible reactions that generate Fe nanoparticles. The metallic particles will increase the overall conductivity of the electrodes (in accordance with the impedance result, Supporting Information, Figure S5a). As a result, the charge transfer kinetics will also be improved, resulting in the increment of the capacity in the following cycles. (iii) The decomposition of the electrolyte forms an organic polymeric/gel-like SEI layer on the electrode surface. This SEI layer could improve the mechanical cohesion of the active materials without hindering the ion transfer. The SEI layer could also provide excess lithium ion storage sites by a so-called “pseudocapacitance-type” behavior, especially in the low potential region.

Interestingly, the addition of glucose in the FeCl₃ solution has an effect to the crystal phase and morphology of the iron oxide particles. When the glucose solution was not added, the resulting material is rice-shaped Fe₃O₄ nanoparticles. The cyclic properties of both types of GF-supported electrodes are shown in Supporting Information, Figure S6. Clearly, the GF@Fe₃O₄ electrode has a much lower and less stable capacity during cycles up to 500 times.

The outstanding performance of the GF@Fe₃O₄ electrodes can be attributed to the rational design of the mesoscale structure that takes advantages in both electrical conductivity and structural stability (see discussion in the introduction part). We would like to restate that this ALD ZnO-assisted method for Fe₃O₄ bicontinuous nanocristallite films can be generalized to other carbon substrates or even metal oxide nanowires. The most determinant step is the ZnO, which affects the homogeneity of the resulting iron oxide layers and substantially increase the loading of coated active materials. To prove this, we have repeated the experiments on chemically produced graphene oxide and carbon nanotubes. As illustrated in Supporting Information, Figure S7, the coatings of Fe₃O₄ are also homogeneous. Note that the total mass of the electrodes here is still very low, which also hinders the real application of the electrodes. However, this might be overcome by stacking such GF-supported active material electrodes to form a multilayer film, so as to increase the energy density.

In conclusion, we have demonstrated a new strategy to achieve bicontinuous mesoporous Fe₃O₄ nanostructures on 3D graphene foams for the LIB application. Because of the rational design and the unique mesoscale structure, the electrodes show a high capacity of 785 mAh g⁻¹ at 1C discharge—charge rate and could maintain this high capacity up to 500 cycles. This fabrication method is compatible with many other carbon substrates, such as graphene oxides and carbon nanotubes. The homogeneous grafting of iron oxides with tunable loadings onto carbon supports is exclusively attributed to the uniform coating of ZnO by ALD.

Methods. Growth of 3D Graphene Foams

The growth of the 3D graphene foams was achieved by chemical vapor deposition (CVD) using First Nano’s EasyTube 3000 System with a modified recipe from previous methods. Briefly, the 8 × 8 cm size nickel foams were directly used as the scaffold templates and were loaded into a 5 in. quartz tube inside a horizontal tube furnace. Then the furnace was heated to 1000 °C under an Ar (500 sccm) plus H₂ (200 sccm) atmosphere and stayed at the peak temperature for 5 min in order to clean the nickel foam surfaces and eliminate the thin surface oxide layer. After the annealing procedure, a small amount of CH₄ was introduced into the reaction tube at ambient pressure. The flow rates of CH₄, H₂, and Ar were 50, 100, and 800 sccm, respectively. After 2 min growth, the samples were rapidly cooled to room temperature at a rate of ∼100 °C min⁻¹ under a constant flow of Ar (500 sccm) and H₂ (200 sccm). Free-standing GF foam was obtained via acidic etching of nickel backbone in Fe(NO₃)₃/HCl mixture solution.

Atomic Layer Deposition of ZnO and Formation of Fe₃O₄ Nanostructure

Before ALD deposition, the graphene foams were treated with oxygen plasma. The reactive ion etching (RIE) was performed on a March PX-250 plasma etching system at 100 sccm oxygen gas flow, 70 mTorr, and 100 W power density for 5 min. The plasma processed graphene foams were then directly transferred to the ALD chamber for ZnO deposition. The ZnO deposition was done by Beneq TFS 200 system at 200 °C using diethyl zinc (DEZ, 99.99%, Sigma Aldrich) and H₂O as the Zn and O precursors, respectively. The thickness was controlled by the cycles; in this work 60, 180, and 300 cycles were used to obtain around 10, 30, and 50 nm thickness, respectively.

The ALD ZnO-coated graphene foams were immersed into a mixture of FeCl₃ (30 mM) and glucose solution (30 mM) for 24 h to convert ZnO completely into FeOOH. Then, the samples were annealed in an Ar atmosphere at 400 °C for 2 h in order to transform FeOOH to Fe₃O₄ and, simultaneously, glucose to amorphous carbon.

Structure and Morphology Characterization

The morphology of the samples was characterized using a JEOL JSM 6700F field emission scanning electron microscopy (SEM) and a JEOL JEM-2010 transmission electron microscopy (TEM). The XPS measurements were performed with a VG ESCALAB 220i-XL system using a monochromatic Al Kα1 source (1486.6 eV). All XPS spectra were obtained in the constant pass energy (CPA) mode. The pass energy of analyzer was set to be 10 eV to have high measurement accuracy. The binding energy scale was calibrated with pure Au, Ag, and Cu by setting the Au 4f7/2, Ag 3d₅/₂, and Cu 2p₃/₂ to binding energy of 84.0, 368.3, and 932.7 eV, respectively. TGA was conducted on a TGA Q500 (Thermal Analysis Instruments, Burlington, MA) machine in O₂ with a flow rate of 60 mL min⁻¹ and a temperature ramp rate of 10 °C min⁻¹ from room temperature to 800 °C.

Electrochemical Performance Test

Standard CR2032-type coin cells were assembled in an Ar-filled glovebox (Mbraun, Unilab, Germany) by directly using the as-fabricated graphene foam supported Fe₃O₄ nanostructures (GF@Fe₃O₄) as the electrodes without using any binder or additives. The lithium metal circular foil (0.59 mm thick) was used as the counter electrode and a microporous polypropylene membrane served as the separator. The electrolyte consisted of 1 M LiPF₆ in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 by volume). Before the electrochemical measurements, the assembled cells were aged in the glovebox for 10 h. Galvanostatical discharge—charge experiments were performed at different current densities in the voltage range of 0.01—3.00 V with a multichannel battery tester (Neware, China). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured using an electrochemical workstation (CHI760D, Chenhua, Shanghai).
H.J.F thanks the financial support by SERC Public Sector Research Funding (Grant 1121202012), Agency for Science, Technology, and Research (A*STAR). H.J.F. and Z.X.S. acknowledge the support by Singapore Ministry of Education Academic Research Fund Tier 3 (MOE2011-T3-1-005). H.Z. acknowledges the support by Singapore MOE under AcRF Tier 3 (MOE2011-T3-1-005). This research is also funded by the Singapore National Research Foundation and the publication is supported under the Campus for Research Excellence And Technological Enterprise (CREATE) programme (Nanomaterials for Energy and Water Management). The authors also acknowledge partial financial support from the Energy Research Institute @NTU and the help from Ting Yu and his group members with the usage of glovebox and oxygen plasma etcher.

REFERENCES

(39) The G peak is associated with the doubly degenerate (iTO and LO) phonon mode (with E2g symmetry) at the Brillouin zone center. The disorder-induced D band involves one iTO phonon and one defect. Both the G′ (also called 2D band) and G* bands come from a double resonance Raman scattering process. The G′ involves two iTO phonons near the K point, while the G* band involves one iTO and one LA phonon. (37,38)

(51) Li, B.; Cao, H.; Hao, J.; Qu, M. Enhanced anode performances of the Fe3O4-Carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47 (37), 10374–10376.

